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Abstract--Analytical solutions for fully developed natural convection in open-ended vertical concentric 
annuli are presented. Four fundamental boundary conditions have been investigated and the corresponding 
fundamental solutions are obtained. These four fundamental boundary conditions are obtained by com- 
bining each of the two conditions of having one boundary maintained at uniform heat flux or at uniform 
wall temperature with each of the conditions that the opposite boundary is kept isothermal at the inlet 
fluid temperature or adiabatic. Expressions for flow and heat transfer parameters are given for each case. 
These fundamental solutions may be used to obtain solutions satisfying more general thermal boundary 

conditions. 

INTRODUCTION 

LAMINAR free convection in vertical open-ended chan- 
nels is likely to find wider use as it could provide the 
flow mechanism in some types of solar heating and 
ventilating passive systems. In modern electronic 
equipment, the vertical circuit boards include heat 
generating elements and this situation can be modelled 
by parallel heated plates with upward flow in the 
intervening space. Examples of other applications 
which may be simulated by such a model are the 
external surface of electric transformers, small dom- 
estic mobile winter oil heaters and some types of radi- 
ators of hydronic heating systems. 

Since the work of Elenbaas [1], free convective 
flow through vertical plane channels and pipes has re- 
ceived quite extensive attention. Reviews of previous 
work done on these two geometries may be found 
in the paper by Quintiere and Mueller [2] and the 
recent publications by Pollard and Oosthuizen [3], 
Oosthuizen [4], and Wirtz and Haag [5]. 

On the other hand, the annular geometry is widely 
employed in the field of heat exchangers. A typical 
application is that of gas cooled nuclear reactors, in 
which cylindrical fissionable fuel elements are placed 
axially in vertical coolant channels within the graphite 
moderator, the cooling gas flowing along the channels 
parallel to the fuel elements. Generally, heat transfer 
within such channels is by turbulent forced convec- 
tion, but laminar free convection may provide the 
sole means of the necessary cooling during shut down 
periods. 

Developing laminar natural convection in vertical 
concentric annuli has been studied by El-Shaarawi 
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and Sarhan [6, 7], Al-Arabi et al. [8], Oosthuizen and 
Paul [9] and E1-Shaarawi and Khamis [10]. In two of 
these investigations [8, I0] a constant heat flux is 
applied at one of the boundaries of the annulus whilc 
the opposite boundary is insulated. In other inves- 
tigations [6, 7, 9] the case of an isothermal boundary 
and an opposite adiabatic boundary has been con- 
sidered. Moreover, Oosthuizen and Paul [9] have also 
considered the case of two isothermal boundaries one 
of which is maintained at the ambient temperature. All 
these investigations use boundary-layer assumptions, 
which are applicable at large Rayleigh numbers. The 
obtained results show that at relatively low Rayleigh 
numbers, or sufficiently large height to gap width 
ratios (l/b), fully developed conditions can be achieved 
before the fluid reaches the annulus exit cross-section. 

Fully developed free convection flows are obtained 
when the inertia forces vanish and a balance is 
attained between the pressure and gravitational forces 
on the one hand and the viscous forces on the other 
hand. The study of such flows gives the limiting con- 
ditions for developing flows and provides an ana- 
lytical check on numerical solutions. 

Nevertheless, to the authors' knowledge, only two 
studies [7, 11] are available in the literature dealing 
with fully developed free convection flows in vertical 
annuli. For annuli with one isothermal boundary and 
an opposite adiabatic boundary, E1-Shaarawi and 
Sarhan [7] showed that the fully developed free con- 
vection axial velocity profile is similar to that for axial 
forced flows in annuli. In a recent publication, Joshi 
[11] presented an analytical solution for the fully 
developed free convection flow in annuli with two 
isothermal boundaries, the inner of which is main- 
tained at a higher temperature than the outer one. 

The lack of analytical solutions for fully developed 
laminar natural convection in vertical concentric 
annuli with constant heat flux boundary conditions 

1873 



NOMENCLATURE 

a local heat transfer coefficient based on k 
the area of the heat transfer surface, l 
q/(t~.- to) = T- k(6t/6r)~/(tw- to), L 
minus and plus signs apply respectively N 
for heating and cooling at the inner Nu 
boundary and vice versa at the outer Nu 
boundary 
average heat transfer coefficient over the 
annulus height, based on the average 
temperature of the heat transfer 
boundary, f i /nDwl(~- to) = j'to a dz/l p 

b annular gap width, (r2-rO 
C~ constants of integrations where i = l, 2, 3 p' 

and 4 P0 
Cp specific heat of fluid at constant pressure 
D equivalent (hydraulic) diameter of p~ 

annulus, 2b 
D~ diameter of heat transfer boundary 
f volumetric flow rate, 

~ 2rcru dr = n(r~ -r~)uo P 
F dimensionless volumetric flow rate, 

f'~zk,, Gr* Po 
g gravitational body force per unit mass 

(acceleration) Pr 
Gr Grashof number, T-gfl(t~- to)D 3/72 in q 

the case of an isothermal boundary or 
-T-gflqD 4/272k in the case of uniform heat 
flux (UHF) heat transfer boundary, the 
plus and minus signs apply to upward 
(heating) and downward (cooling) 
flows, respectively. Thus Gr is a positive 
number in both cases 

Gr* modified Grashofnumber, D Gr/l 
h heat gained or lost by fluid from the Q~ 

entrance up to a particular elevation in r 
the annulus, pofcp(tm-to) for both cases r~ 
(nD,qz in the case of uniform heat flux r2 
at the heat transfer boundary) R 

/'7 heat gained or lost by fluid from the Ra 
entrance up to the annulus exit, i.e. Ra* 
value of h at z = 1, pfcp(Fm-- to) and in the t 
case of UHF at the heat transfer tr, 
boundary this reduces to nDwlq 

H dimensionless heat absorbed from the t'm 
entrance up to any particular elevation, 
h/[npocpl7 Gr* (tw-to)] in the case of an 
isothermal heat transfer boundary or to 
2hk/npoc/: Gr* qDl in the case of the tw 
UHF heat transfer boundary and 
reduces in both cases to FT~, i.e. ?, 
2I.~ URTdR  

/ t  dimensionless heat absorbed from the T 
entrance up to the annulus exit, i.e. 
value of H a t  z = 1, ~/[npocJ7 Gr* 
× (tw- to)] in the case of an isothermal 
heat transfer boundary or 21Tk/(~pocp7 Gr* 
x qDl) in the case of the UHF heat transfer 
boundary and reduces in both cases to 
FL,, i.e. 2f~ UR~dR 

thermal conductivity of fluid 
height of annulus 
dimensionless height of annulus, l/Gr* 
annulus radius ratio, rl/r2 
local Nusselt number, [a[D'k 
average Nusselt number based on the area 
of the heat transfer surface over the 
whole annulus height, I6lDk, it reduces 
to 2//~w in the case of UHF at the heat 
transfer boundary 
pressure of fluid inside the channel at any 
cross-section 
pressure defect at any point, p - p s  
pressure of fluid at the annulus 
entrance 
hydrostatic pressure, Tpogz where the 
minus and plus signs are for upward 
(heating) and downward (cooling) flows, 
respectively 
dimensionless pressure defect at any 
point, p'r~/pol'-72 Gr*' 
dimensionless pressure defect at annulus 
entrance, por4/po127"- Gr *z 
Prandtl number, llc'p/k 
heat flux at the heat transfer surface ; it 
has positive values in the case of 
upward (heating) flows and negative 
values in the case of downward 
(cooling) flows, q = -T-k(gt, gr)~ where 
the minus and plus signs are, 
respectively, for heating and cooling in 
case I. These signs should be reversed 
in Case O 
heat transfer per unit length 
radial coordinate 
inner radius of annulus 
outer radius of annulus 
dimensionless radial coordinate, r/r~ 
Rayleigh number, Gr Pr 
modified Rayleigh number, Gr* Pr 
fluid temperature at any point 
mixing cup temperature over any cross- 
section, j'~ rut dr/S~ ~ ru dr 
mixing cup temperature at exit 
cross-section, i.e. value of tr, at 
z = l  
fluid temperature at annulus entrance 
temperature of heat transfer 
boundary 
average temperature of heat transfer 
boundary 
dimensionless temperature at any point, 
( t -  to)/(tw- to) in the case of an 
isothermal heat transfer boundary or 
(t-to)/(qD/2k) for UHF at the heat 
transfer boundary and thus it is positive 
for both heating (upward) and cooling 
(downward) flows 
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N O M  ENCLATU RE (continued) 

T,, dimensionless mixing cup temperature at 
any cross-section, ( t~- to) / ( t ,~-  to) in the 
case of an isothermal heat transfer bound- 
ary and (t~,-to),(qD/2k) in the case of 
U H F  at the heat transfer boundary 

?~ mixing cup temperature at exit cross-sec- 
tion, i.e. value of T~ at z = l 

T~ temperature of heat transfer boundary at 
any cross-section 

iT temperature of heat transfer boundary at 
exit cross-section, i.e. value of T~ at _- = 1 

u axial velocity component at any point 
u, entrance axial velocity, 

~:, 2rtru d r / [ T t ( r ~  - r~)] 

U 

Z 

dimensionless axial velocity component 
at any point, ur~q;, Gr* 
axial coordinate 
dimensionless axial coordinate, 
z l Gr*. 

Greek symbols 
fl volumetric coefficient of thermal 

expansion 
,' kinematic viscosity of fluid, IVp(~ 
I~ dynamic viscosity of fluid 
p fluid density at temperature t. 

p,[l  - - f l u -  t0)] 
P0 fluid density at inlet fluid temperature t,. 

and also with isothermal boundary conditions other 
than those treated in refs. [7, I 1], motivated the pre- 
sent ~vork. The purpose of this paper is to present, in 
closed forms, fully developed free convection solu- 
tions, corresponding to four fundamental  thermal 
boundary conditions, in vertical concentric annuli.  

GOVERNING EQUATIONS A N D  B O U N D A R Y  
CONDIT IONS 

We consider steady laminar fully developed free 
convection flow inside an open-ended vertical con- 
centric annulus  of a finite length (1), immersed in a 
stagnant fluid of infinite extent maintained at a con- 
stant temperature to. Figure 1 shows the physical situ- 
ation in which at least one of the channel walls is 
heated or cooled either isothermally or at a constant 
wall heat flux so that its temperature (i.e. temperature 
of the inner surface of the outer cylinder or that of 
the outer surface of the inner cylinder) is different 
from the ambient temperature to. Due to fully 
developed flow assumptions the fluid enters the part 
under consideration of the annular  passage with an 
axial velocity profile which remains invariant in the 
entire channel (i.e. Ou/~z = 0). The fluid is assumed 
to be Newtonian,  enters the channel at the ambient 
temperature to, and has constant physical properties 
but obeys the Boussinesq approximation according to 
which its density is constant except in the gravitational 
term of the vertical momentum equation. Axial sym- 
metry is assumed and viscous dissipation and internal 
heat generation are absent. 

Under the above mentioned assumptions and using 
the dimensionless parameters given in the Nomencla- 
ture, the equations of continuity, motion and energy 
reduce to the following two simultaneous non-dimen- 
sional equations : 

dP(Z)  1 d I ~ R R ) ]  T ( R ' Z )  = 0  (1) 
- d ~ - + ~  R + 16(1_N)4 

Four boundary conditions are therefore needed to 
obtain a solution for the above two second-order 
differential equations. The two conditions related to 
U are 

U(I) = U(N) = 0. (3) 

On the other hand, there are many possible thermal 
boundary conditions applicable to the annular  con- 
figuration. [n the present paper, the non-dimensional  
parameters used in the formulation of the problem 
are chosen to suit annuli having their two boundaries 
at two different uniform heat fluxes (q~ and q_,) or at 
two different uniform temperatures (t~ and t:) or 
annuli under one of four fundamental  boundary con- 
ditions. These four fundamental  boundary conditions 
are obtained by combining each of the two conditions 
of having one boundary maintained at uniform wall 
heat flux (q) or at uniform wall temperature (t~) with 
each of the conditions that the opposite boundary is 
kept isothermal at the inlet fluid temperature (to) or 
adiabatic (#:t gr = 0). 

With the two boundaries of an annulus maintained 
at U H F  conditions, ifq~ refers to the higher heat flux 
then qL will be at the hotter wall in case of heating 
and at the cooler wall in case of cooling. Thus, the 
value of rq (ratio of the heat fluxes at the two bound- 
aries, q,_/q~) may vary from - 1 to 1. Similarly. when 
the two boundaries of an annulus are kept isothermal, 
t t refers to the wall which has the larger temperature 
difference from to. Thus, t~ is the temperature of the 
hotter wall in case of heating the two boundaries 
and of the cooler wall in case of cooling both bound- 
aries. Therefore, the wall temperature difference ratio 
rr[= (t2--to)/(tl--to)] may, in this case of UWT 
boundary conditions, also vary from - 1 to 1. 

From the previous discussion it may be seen that 
there are many thermal boundary conditions appli- 
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cable to the annular geometry. However, under cer- 
tain conditions, the energy equation (2) becomes 
linear and homogeneous in T(e.g. when dT/dz is con- 
stant), and then any linear combination of solutions 
will be a solution. It may then be possible to develop 
certain special or fundamental solutions to this equa- 
tion satisfying particular or specific boundary con- 
ditions, which can be combined to satisfy any other 
boundary conditions. This method is known as the 
method of superposition. Reynolds et al. [12] defined 
four fundamental boundary conditions for the annu- 
lar geometry which produce four fundamental solu- 
tions to the energy equation (2) when it becomes 
linear. For the sake of completeness, these funda- 
mental solutions are stated hereinafter. 

(1) Fundamental solutions of first kind, which 
satisfy the boundary conditions of a temperature step 
change at one wall, the opposite wall being kept iso- 
thermal at the inlet fluid temperature. Using the 
present notation, this corresponds to T =  1 at one 
wall and T- -  0 at the opposite wall (i.e. rr = 0). 

(2) Fundamental solutions of the second kind 
which satisfy the boundary conditions of a step change 
in heat flux at one wall, the opposite wall being adia- 

batic. Using the present notation, this corresponds to 
d T/dR = - 1/(1 - N )  at the inner wall and g" T/dR = 0 
at the outer wall or dT/dR = 0 at the inner wall and 
dT/t3R = 1/(1 - N )  at the outer wall (rq = 0). 

(3) Fundamental solutions of the third kind which 
satisfy the boundary conditions of a temperature step 
change, at one wall, the opposite wall being adiabatic. 
This corresponds to T = 1 at one wall and dT/~R = 0 
at the opposite wall. 

(4) Fundamental solutions of the fourth kind which 
satisfy the boundary conditions of a step change in 
heat flux at one wall, the opposite wall being kept 
isothermal at the inlet fluid temperature. This cor- 
responds to ~T/~R = - I / ( I - N )  at the inner wall 
while T = 0 at the outer wall or T = 0 at the inner 
wall and dT/dR = 1/(1 - N )  at the outer wall. 

With any of the above mentioned boundary con- 
ditions, the boundary opposite to that maintained 
adiabatic (i.e. dT/8R = 0) or at to (i.e. T = 0) is termed 
the heat transfer boundary (even though there is trans- 
fer of heat through a boundary maintained at T = 0). 
For each of the above fundamental solutions, two 
cases are considered, namely, case (I), in which the 
heat transfer boundary is at the inner wall and case 
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(O) in which the heat transfer boundary is at the outer 
wall. The aim of the present paper is to obtain the 
above mentioned four fundamental solutions. 

GENERAL ANALYSIS 

Substituting T from equation (1) into equation (2), 
we obtain 

d2P d ' U  
U Pr ,~v~. , + + 

dZ- T E  a 

2 d3U 1 dzU 1 dU 
R dR 3 R 2 dR:  + 1{ 3 dR 

-- O. 

(4) 

A solution of equation (4) in the form U = U(R) is 
only possible if 

d2P/dZ 2 = ~ (5) 

where :~ is a constant. From equation (!) we then have 

8T/SZ = 16: t (1-N) '  (6) 

which means that, for a given R in a given annulus, 
the dimensionless temperature T varies linearly with 
the axial distance Z. This implies that the assumption 
of a hydrodynamically fully developed free convection 
flow should necessarily mean that the flow is also ther- 
mally fully developed, regardless of the value of the 
Prandtl number (Pr). In other words, for free convec- 
tion flows in vertical channels, the thermal develop- 
ment length is shorter than or at most equal to that 
of the hydrodynamic development length, irrespective 
of the value of the Prandtl number. However, in pure 
forced convection flows, such a result is only obtained 
if Pr <~ 1. 

Integrating equation (5) twice and applying the 
conditions that P = 0 at both inlet and exit (i.e. at 
Z = 0 and L), gives 

P = ~ Z ( Z -  L)/2. (7) 

Substituting equation (5) into equation (4) yields 

R , d ' U  3d3U _ R , . d " U  dU 
~l~i +2R ~ - ~  ~ + R ~  +) . 'Rag, '=  0 

(8) 

where 

2 4 = x Pr. (9) 

Equation (8) may also be written in the following 
concise form : 

d 1 d ]  2 4 

+ ~ 8RJ u+,~ u = o. 0o)  

Substituting P from equation (7) into equation (l) 
gives 

( ~ _ )  , d /" d U '  1 6 ( ' - N '  4 " T  ( l l ,  

The two governing equations (10) and (11) can be 
simplified if one of the two annulus boundaries is 

kept isothermal. In order to satisfy this boundary 
condition, the left-hand side of equation (t 1) must, in 
this particular case, be independent of Z. Thus, it is 
concluded that :~ (and hence 2) must, in such a case, 
equal zero. Therefore. equations (5)-(8) and ( l l )  
reduce, in this case, to the following equations, respec- 
tively : 

d :P  
- 0 ( 1 2 )  

:X - -  dZ 2 

8T 
...... 0 (13) 

?Z 

P = 0 (141 

R 3 U " " + 2 R : U ' " - R U " + U  ' = 0  (15) 

1 6 ( l - N ) '  d ( d U )  
T Rdfi  (16) 

R dR " 

Equation (13) states that, in a case with an iso- 
thermal boundary, the frilly developed temperature 
profile is constant or at most a function of the radial 
coordinate only. On the other hand, equation (14) 
states that the fully developed pressure inside an annu- 
lus with an isothermal boundary is equal to the hydro- 
static pressure, at the same elevation, outside the 
annulus. This implies that, in such a fully developed 
case with an isothermal boundary, there would he no 
pressure drop due to fluid viscous drag since this latter 
is just offset by the bouyancy driving force. 

If the two governing equations (15) and 116) or 
their general forms (8) and (11) are solved for the 
velocity and temperature profiles (U and T) then the 
following useful parameters can be evaluated. 

The dimensionless volumetric flow rate !F) can be 
evaluated from the following equation : 

F =  :." RUdR.  (17) 

Since for a fully developed flow U is a function of R 
only, it follows that the definite integral on the right- 
hand side of equation (17) and hence F are constants 
regardless of the value of the axial coordinate Z, i.e. 
they are also constants irrespective of the value of the 
channel height. It can, however, be shown that, in 
cases with two UHF boundaries, there exists a relation 
between this constant fully developed value of F and 
the thermal boundary conditions applied at the 
boundaries of an annulus. Integrating equation (2) 
with respect to R from R = N to 1, the following 
equation is obtained : 

RgR}R= ' \ #RjR=,v=Pr RU~dR.~.. (IS) 

However, for a given annulus, equation (6) shows 
that, in cases with two UHF boundaries, g T g Z  is 
constant and hence it can be taken out of the above 
integral. Substituting for 8T/SZ from equation (6) in 
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equation (18) and using the result in equation (17) 
gives 

F =  2 ;  R U d R  

9T - N  [82 (l - N')] .  (19) 

It may also be worth mentioning that, in a case with 
a UWT heat transfer boundary, equations (13) and 
(18) give the following result : 

9T 

Taking into consideration that the rate of heat 
transfer per unit length from the inner and outer sur- 
faces of an annulus are given, respectively, by 

Q,, = -T- 2nr , k ( ! t~  (21) 
\crib=,, 

and 

Q)o= +2nr2k(~ t )  (22) 
- \ c r / ,  =.. 

then for a fundamental solution of  the first kind (i.e. 
a case with two UWT boundaries), we have 

(~T)~ (23a) Qt~ = -T- 2nk(tw - to)N ~ =,v 

and 

Q,o = +_2nk(tw-to) ~ = .  (23b) 

The upper and lower (plus or minus) signs in the 
above expressions apply, respectively, for heating and 
cooling. Equations (20), (23a) and (23b) yield the 
following conclusions. In an annulus with two UWT 
boundaries, or an annulus with a UWT boundary and 
an opposite U H F  boundary, when fully developed 
conditions are achieved, the rate of heat transfer from 
one boundary should be equal and opposite to that 
from the other boundary (i.e. A iqt = - A 2 q 2 ) .  This 
implies that, in such cases, the net rate of heat transfer 
to/from the fully developed fluid flow is zero. Thus, 
it is anticipated, in such cases, that the bulk fluid 
temperature would remain constant. This is because 
the heat passes through the fluid from one boundary 
to the other in such a manner as if the fluid were 
stationary, i.e. by pure steady conduction. However, 
in the special case with a UWT boundary (T = l) and 
an opposite adiabatic boundary (t3T/dR = 0), equa- 
tion (20) shows that (OT/gR) at the UWT boundary 
must also vanish. Thus, in this special case, fully 
developed conditions are achieved when both (9 T/OR) 
and (9 T/gZ) vanish, i.e. the temperature becomes uni- 
form at the UWT boundary. 

Equation (19) confirms that the fully developed 

dimensionless volumetric flow rate is independent of 
the dimensionless channel height (L) and it depends 
on the thermal boundary conditions applied at the 
two annulus boundaries. This means that, when the 
channel becomes sufficiently high so that the flow 
reaches its state of full development, a further increase 
in the channel height would not produce any further 
increase in the sucked volumetric flow rate. When 
fully developed conditions are achieved, in a case with 
two U H F  boundaries, an increase in the value of F 
may be obtained by increasing the heat flux at the 
boundaries rather than the channel height L. 

The dimensionless inlet velocity U0 is given in terms 
of F b y  

Uo = F / ( I - N 2 ) .  (24a) 

Therefore, U0 is similarly constant irrespective of the 
annulus height and is related, in cases with UHF 
boundaries, to the thermal boundary conditions by 
the following equation : 

~T OT .4 1 

(24b) 

The dimensionless mixing cup temperature is given by 

; /r T m = UTR dR UR dR. (25) 
ldN 

TO find the variation of T,,, in the fully developed flow 
region, with the dimensionless axial distance Z, the 
above equation is differentiated with respect to Z. 
Since U is independent of Z, this gives 

arm e'er / f; 
d Z  -  VRdR/ , CRdl¢  

which, on substituting for OT/~Z from equation (4) 
into the above equation, yields 

dr., 
- 1 6 ~ ( 1 - N ) ' .  (26) 

dZ 

Integrating equation (26) with respect to Z between 
channel entrance and exit, taking into consideration 
that Tm= 0 at Z = 0, results in 

Tm= 16~t(1-N)4Z. (27) 

Using the dimensionless parameters given in the 
Nomenclature, the following expressions for the local 
Nusselt number can easily be obtained : 

with a UWT boundary 

Nu = 4-2(1 -N)(~T/gR)~,  ; (28a) 

with two U H F  boundaries 

Nu = 4-2(I--N)(gT/OR)w/T,, = 2/Tw (28b) 

where the minus and plus signs apply respectively for 
cases (I) and (O) when there is heating and vice versa 
when there is cooling. 

From equation (16) it can be seen that (OT/bR) is 
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a function of R only which is dependent on the fully 
developed axial velocity profile (U), i.e. it is inde- 
pendent of Z. Hence, for a case with a UWT heat 
transfer boundary,  equations (16) and (28a) show 
that the fully developed local Nusselt number  is con- 
stant, i.e. independent of Z. Consequently, the fully 
developed average Nusselt number  is, in this case 
(UWT), constant, i.e. independent of channel height 
L. On the other hand, with the two boundaries at 
UHF,  equation (11) shows that the temperature varies 
linearly with Z. Hence, equations (11) and (28b) show 
that the fully developed local Nusselt number  and 
consequently the average Nusselt number,  for a given 
annulus with U H F  boundaries, vary hyperbolically 
with Z. These conclusions are as expected since, as 
was previously mentioned, the assumption of hydro- 
dynamically fully developed flows implies also ther- 
mally fully developed free convection flows. 

F U N D A M E N T A L  SOLUTIONS OF FIRST KIND 

In this case, the two boundaries of the annulus are 
kept isothermal, one of which is at the inlet ambient 
fluid temperature to while the opposite boundary' is at 
a higher or a lower temperature. Therefore, equations 
(15) and (16) arc the two governing equations in such 
a case. 

Equation (15) is readily solved and we find 

U= CIInR+C:RZ/2+C3(R21nRi2-R:,4)+C4 

(29) 

where C~, C:, C3 and C~ are arbitrary constants. 
Substituting from equation (29) into equation (16) we 
obtain 

T = A + B l n  R (30) 

where 

,4 = --16(I-N)4(2Cz+C3), B =  - 3 2 ( 1 - N ) ~ C 3  . 

To obtain the constants C~, C,, C3 and C4, the 
velocity boundary conditions (3) together with the 
follo~ving thermal boundary conditions should be 
applied to equations (29) and (30). 

Case (I). Temperature step at the inner wall while 
the outer wall is kept at the ambient temperature, i.e. 

T(N,Z) = 1 and T ( I , Z )  = 0. 

Case (O). Temperature step at the outer wall while 
the inner wall is kept at the ambient temperature, i.e. 

T(N,Z) = 0 and T ( I , Z )  = 1. 

The solutions obtained are as follows. 

Case (I) 

U = [(N: In N +  1 - N-') In R/ln N 

+R21nR-I-R2]/[64(I-N)alnN] (31a) 

and 

T = In R l n  N. (32a) 

Case (O) 

U =  [ ( I + I n N ) ( I - R Z ) + R : l n R  

+(NZ-ln:V-I ) InRlnN][64(I -N) t lnN]  (31b) 

and 

T =  l - I n  R I n N .  (32b) 

It may be worth mentioning that each of the tem- 
perature profiles (32a) and (32b) satisfies equation 
(20), which provides a check on these obtained solu- 
tions. 

The volume flow rate F and the non-dimensional  
mixing cup temperature T~, defined by equations (17) 
and (25) are readily calculated using solutions ob- 
tained for U and T. The results are as follows. 

Case (I) 

I 3 N: 7N 4 ,¥4 In N ,V : 

F =  -- i6 . . . .  4 + - i 6  - 4 + 2. in.X: 

1 \~ 1/ [__( . . . .  : ' 1~ .V] 4In,X" 4In N l - :V)  + In (33a) 

2 F 5 3,\"-" 27N N: In ;V 3.V 4 In N 
r~= _=-fLeet 4- + + - - 32 4 S 

,4 --,], , ,, 
1 ~r4(N) [ 6 4 ( 1 - . V  (INN)3]. 

+ 4 1 n N  

(34a) 

Case (O) 

L1 t N z 3N 4 In N .V: 
F =  ] ~ -  j - -  ~-~- + - - ~  - ,~ln]~/  

\ ' "  ~ ] / / [ 3 2 ( I  - + 4 In~V + N) ~ In.V] (33b) 

2 1 1 0  N z N 2 21 I n . \  
r m = F L 1 6  4 2 1 n X + 3 _ ~ - ~  ~+ 

N 2 1 13N ~ 

2 ( l n N )  2 + 4 ( I N N ) :  321n.V 

+4(1  )- - N ) ~ I n V ]  (34b) 

It may be worth mentioning that, in the present 
case (with isothermal boundaries), the temperature T 
(and hence Tin) does not vary with axial distance Z. 
Thus ;~m = T m  and ,0 = H. This means that the heat 
transferred to/from the fluid through the two bound- 
aries of the annulus,  under the fully developed flow 
conditions, does not affect the fluid bulk temperature 
since they are equal and opposite (in order that fully 
developed conditions can be achieved in such a case). 

Expressions for the fully developed Nusselt number  
(local and also average) are obtained after getting 
the temperature gradient at the walls from equations 
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(32a) and (32b) and then substituting in equation 
(28a). The results are : 

for case (I) 

for case (O) 

Nu, = - 2 ( I - N ) / ( N l n N ) ;  (35a) 

Nuo = - 2(1 - N)/ln N. (35b) 

Finally, an expression for the average Nusselt num- 
ber over the entire annulus height (i.e. from entrance 
until exit, taking the developing region into con- 
sideration) in terms of Rayleigh number, when fully 
developed conditions are achieved, can be derived by 
substituting values o f /~  in the following equation : 

i.e. 

for case (I) 

for case (0)  

m 
Nu = DITI Ra*/D, (35c) 

Nut = ( 1 - N ) I t R a * / N ;  (35d) 

Nt-~o = (1 - N)fiI Ra*. (35e) 

F U N D A M E N T A L  SOLUTIONS OF SECOND KIND 

In this case, one of the annulus boundaries is main- 
tained at a constant heat flux (q) and the opposite 
boundary is perfectly insulated. The governing equa- 
tions in such a case are equations (8) and (11). Equa- 
tion (8) has the following solution in terms of Bessel 
functions of zero order : 

U = C',Jo(~/i2R) + C~ Yo(~i2R) 
+ C ~Io(~/i2R) + C]Ko(~/i2R). 

This solution can be expressed in terms of Kelvin 
functions of zero order as 

U = C, b e r ( 2 R ) + C : b e i ( 2 R )  

+ C3 ker (2R) + Ca kei (2R) (36) 

where 

ber (2R) T-i bei (2R) = J0(2Ri ~ 3/2) = lo(2Ri ± ,/2) 

ker (2R) + i kei (2R) = Ko(2Ri + L,2) 

Ko(2R) = ½ni[I0(2R) + i  Yo(i2R)] 

Jo and Yo are Bessel functions of zero order while Io 
and Ko are the modified Besset functions of zero order. 
Tables of Kelvin functions ber, bei, ker, kei and 
also Bessel functions Jo, Yo, Io and Ko are available 
in ref. [13]. 

Taking into consideration that 

[ R ber" R ]" = -- R bei R, [ R b e i ' R ] ' = R b e r R  

[ R k e r ' R ] ' = - R k e i R ,  [ R k e i ' R ] ' = R k e r R  

where ' means differentiation with respect to R, sub- 
stitution of U from equation (36) into equation (13) 

yields the following solution for the temperature pro- 
file : 

1 6 ( 1 _ N ) 4 = ~  Z - ~  +22[C, bei(2R) 

- C2 ber (2R) + C3 kei ( 2 R ) -  C4 ker (2R)I. (37) 

The constants C,, C2, C3 and C4 are evaluated as 
follows. Taking into consideration the following 
relations : 

~/2 ber' R = ber~ R+bei~ R 

~/2 bei' R = - ber, R + bei ~ R 

~/2ker 'R = kerr R+ke i ,  R 

~/2 kei' R = - k e r ,  R+ke i ,  R 

and differentiating equation (37) with respect to R we 
get 

,/2 0r  
= C t [ - b e r ,  (2R)+bei ,  (2R)] 

1623(1 - - N )  4 OR 

- C: [ber, (2R) + bei, (2R)] + C3 [ - kert (2R) 

+ke i ,  (2R)] -C4[ker ,  (2R)+kei ,  (2R)]. (38) 

The present fundamental thermal boundary con- 
ditions are given below. 

Case (I). Step change in heat flux at the inner wall 
while the outer wall is adiabatic, i.e. 

OT/OR[R=u = - 1/(1 - N )  and OT/?RIR=, = O. 

Case (O). Step change in heat flux at the outer wall 
while the inner wall is adiabatic, i.e. 

OT/~RIR=u = 0 and OT/ORIR=, = 1 / ( l - N ) .  

Substituting the velocity boundary conditions (3) 
and the above thermal boundary conditions, equa- 
tions (36) and (38), yield the following four equations 
in CI, C2, C3 and C4. 

[M] x 

Case (I) 

Case (0)  

Ci  

C2 

C3 
C4 

Ci  

C2 -- 
[M] x C3 

C4 

0 

0 

-- x/2/[l 6))(1 - -N)  5] 

0 

0 

0 

0 

x/2/[l 6,;.3(1 -- N) s] 

where [M] is the matrix of coefficients given by 
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[M] = 

[ber (LN)] [bei ().N)I 

[ber (2"-)1 [bei (,~.)] 

-ber, (2".m I [-ber, (2".,V) l 
+bei,(;.N)_[ L-bei, (;.N)J 

-ber, (2".)] I-- ber, (2".)] 
+bei ,  (:.)J L - b e i ,  ff.)J 

[ker (2N)] [kei (2".N)] 

[ker (2)] [kei (2".)] 

- k e r ,  (2N) 1 [ - k e r ,  (2".N) 1 
+kei t  (Z.V)J L-ke i~  (:.N)J 

l  --ker, ().) l 
+kei ,  (2".)J L - k e i ,  (L)J 

Each of the above two sets of equations can be 
solved by some standard procedure, such as Cramer's 
rule, to obtain the C's in terms of :.. The value of ). 
can be determined by the following procedure. 

By definition, the dimensionless mixing cup tem- 
perature, in the present case, is given by the equation 

2DwZ 
Tm Pr D F" (39) 

Equating the right-hand sides of equations (27) and 
(39), the following expression for ~. is obtained : 

1 Dw 
2'. 4 = ~ Pr - (40) 

8 ( I - N ) 4 F  D 

This expression reduces in case (I) to 

N 
8(1 - N ) S F  

and in case (O) to 

1 
2"4  _ _  

8(1 --N)SF" 

(41) 

(42) 

It may be worth mentioning that the same expressions, 
equations (41) and (42), can be obtained by sub- 
stituting the present boundary conditions in equation 
(19). Using standard integral relations for the Kelvin 
functions, it may be shown that 

f, ' - , / 2  
F =  2 U R d R  = , [R{C,[ber,(: .R) 

• A 

-bei~ (2R)] + C2[bei~ (2R)+ber~ (2R)I 

+ Ca [bei ~ (:.R) + ber ~ (:.R)] + C4 [kei, (2R) 

+ker~ (2R)]}I' .  (43) 

To obain 2 and the values of Cl, C2, C3 and C4 a 
simple iterative procedure may be used. An assumed 
initial value of 2". is used to obtain an initial set of 
values for C's. These values are then used in equation 
(43) to obtain a value for F, and hence a second iterate 
for ,:. may be obtained from equation (41) or (42). 

The procedure is repeated until convergence within a 
specified tolerance is obtained. 

Having obtained the value of). (and hence ~), equa- 
tion (27) (equation (39)) can be used to obtain Tin. 

Finally, the following expressions for the fully 
developed local Nusselt number are obtained after 
substituting the values of T~ from equation (37) in 
equation (28b) : 

for case (I) 

Nu = 1/[8(1 - N)~[z~(Z - L/2) +).:  {C, bei ().N) 

- C 2 b e r ( ) . N ) + C 3 k e i ( 2 N ) - C 4 k e r ( 2 N ) ~ . ] ] :  (44) 

for case (O) 

Nu = 1/[8(1 - N ) 4 [ ~ ( Z - L / 2 ) + ) . ' - { C I  bei (;.) 

-C,_ber() . )+C3kei(2)-C4ker() . )~,]] .  (45) 

F U N D A M E N T A L  S O L U T I O N S  OF T H I R D  K I N D  

In this case, since one of the boundaries is 
isothermal, equations (14)(16) are the governing 
equations. However, since the wall opposite to the 
heat transfer surface is perfectly insulated, the fluid 
temperature in the annular space becomes ultimately 
uniform at the same temperature as the heated surface 
(T = 1). Thus, in this case, an isothermal flow (at the 
temperature of the heat transfer boundary), in which a 
balance is attained between the buoyancy and viscous 
forces, is achieved. Since fully developed conditions 
in this case mean that P = 0 and T =  1, in both case 
(I) and case (O), equation (1) reduces to 

I dU]  1 (46) 
1 d R d R  = 1 6 ( l - N )  4 R d R  

which upon integrating twice and applying the vel- 
ocity boundary conditions (3) gives 

U = [I - R 2 _ (1 -- N2)(ln R/In ,V)]/[64( 1 - N)41. 

(47) 

For full development, at T-= 1, the mixing cup 
temperature is also uniform everywhere (Tin = 1). 
Therefore, values of the dimensionless volumetric flow 
rate (F) and the dimensionless heat absorbed over the 
entire channel height (/~) are equal and given, for 
both cases (I) and (O), by 

128(i- Z fV) 4 l - -N2  I I - N : ]  F =  /71- I + N ' - + ~  . (48) 

Since full development conditions yield an iso- 
thermal flow, the fully developed local Nusselt num- 
ber is zero. However, expressions for the average Nus- 
selt number over the entire annulus height can be 
obtained by substituting from equation (48) in equa- 
tions (35d) and (35e). This gives 

for case (I) 
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- -  (I+N) I I -N2]  
Nut = 128N(! --N)-" 1 +N"+ - i ~ J R a * ;  

for case (O) 

N---Uo = (1 -- N) FI Ra* 

( I + N )  [ I + N Z  + 1 - N  2] 
128(1-N)  z lnN _l Ra*. 

# 

FUNDAMENTAL SOLUTIONS OF FOURTH 
KIND 

In this case, since one of the boundaries is iso- 
thermal, equations (14)-(16) are the governing equa- 
tions subject to the following boundary conditions. 

Case (I). Step change in heat flux at the inner wall 
while the outer wall is isothermal at the inlet fluid 
temperature, i.e. 

~T/~RI,~=,,,.. = - 1 / ( l - N )  and T(I) = 0. (51a) 

Case (O). Step change in heat flux at the outer wall 
while the inner wall is isothermal at the inlet fluid 
temperature, i.e. 

T(N) = 0 and OT/c3RIR=. = I / ( 1 - N ) .  (51b) 

General solutions for equations (15) and (16) have 
already been obtained. These solutions are given by 
equations (29) and (30) which are also applicable 
here. However, the constants of integrations should be 
obtained by applying the velocity boundary condi- 
tions (3) together with the thermal boundary con- 
dition (51a) or (51b). Taking into consideration that 
the differentiation of equation (30) with respect to R 
gives 

OT/dR = - 3 2 C 3 ( 1 - N ) 4 / R  (52) 

the application of these boundary conditions yields 
the constants of integrations in the following 
sequence. Firstly, the value of C3 is obtained from 
equation (52) after applying the boundary condition 
of a constant heat flux at the heat transfer boundary. 
Secondly, the value of C2 is obtained from equation 
(30) after applying the condition of T =  0 at the 
opposite boundary. Thirdly, using equation (29) and 
the boundary condition U(1) = 0, the value of  C, 
can be obtained. Finally, the boundary condition 
U(N) = 0 in equation (29) results in the value of C,. 
The obtained values of C's are : 

for case (I) 

C, = N(N'- -N ' -  In N -  1)/[64(1 - N ) 5  In N], 

C2 = - N/[64(1 - N) ~], 

C 3 = - 2 C 2 ,  and C 4 = - C : ;  

for case (O) 

C. = (1 -NZ+InN) / [64( I  - N )  5 INN], 

(49) C, = (1 +2  In N)/[64(1 - N )  51 

C 3 =  - l / [ 3 2 ( i - N ) 5 ] , a n d  C.==C3/2. 

The corresponding velocity and temperature profiles 
are : 

for case (I) 

(50) N [ 
U = 6 4 ( I _ N ) ~  ( N 2 - N : I n N - I )  lnR 

lnN 

- R 2 + R 2 1 n R + I ]  (53a) 

T = - N l n  R/(i - N) ; (54a) 

for case (O) 

U =  
1 I- In R 

6 4 ( 1 - N )  5 L ( i - N Z + I n N ) i n N  

+ R'-(I + I n N - I n  R ) - l n  N -  11 (53b) 

T =  ( l n R - l n N ) / ( 1 - N ) .  (54b) 

Expressions for the fully developed dimensionless 
volumetric flow rate in both cases are : 

for case (I) 

N V 3 N "  N ~ 7N" 
3 2 ( 1 - N )  5 L]6 + 4 -  + 41n~ 16 

N41nN N 2 4_INNI ' 
+ ~  2 InN I- • (55a) 

F 

for case (O) 

F 
1 [- 7 N 2 3N 4 l 

6 4 ( t - N )  s L - ~ + - 4 - - - ¢  16 41nN 

InN N 2 N~ 1 
-- T + 2 In N 4 l-n--N.J" (55b) 

The dimensionless heat absorbed from the entrance 
up to any particular cross-section at which the flow 
reaches its state of full development remains constant 
until the fluid reaches the exit cross-section (i.e. 
H =/-1). This is because, in a fully developed region 
with an isothermal boundary (as in the present case), 
the heat gained through one boundary, must be lost 
through the opposite boundary. Expressions for such 
a fully developed value of H (also H) are : 

for case (I) 

/ t = H = 2  UTR dR = + 
,v 32(1 - N )  6 -~- 

2IN 4 1 N 2 N 4 

3 ~ + 4 1 n N  2 1 n N + 4 1 n N  

5N4InN N4(14N)2- ] '  (56a) 
+ ~  
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for case (O) 

1 7 1 = H = 2  UTR dR 

N:  

2 

112, 
3 2 ( 1 -  N) 6 32 

5N 4 101nN 1 

32 + ~ + 4 1 n N  

(INN):  N z N 4 ] 

+ 4 41nN + 4 ! n N j ' /  (56b) 

Similarly, the mtxing cup temperature remains con- 
stant from any cross-section at which the flow reaches 
a state of  full development until the fluid reaches the 
exit cross-section (i.e. Tm = T~ at full development). 
Now, expressions for the fully developed mixing cup 
temperature T~ (also T~) can easily be obtained, for 
cases (I) and (O), by dividing equation (56a) over 
equation (55a) and equation (56b) over equation 
(55b), respectively. 

Finally, substituting the temperature gradient at the 
wall, obtained from the differentiation of  equation 
(54a) or (54b), in equation (28a) the value of  the fully 
developed local Nusselt number in case (I) or ca~e 
(O), respectively, is shown to be equal to 2. 

CONCLUSIONS 

Analytical solutions for fully developed upward 
(heating) or downward (cooling) natural convection 
velocity and temperature profiles in open-ended ver- 
tical concentric annuli have been obtained. These 
solutions correspond to four fundamental  boundary 
conditions obtained by combining each of the two 
conditions of  having one boundary maintained at 
U H F  or at U W T  with each of  the conditions that the 
opposite boundary is kept adiabatic or  isothermal at 
the inlet fluid temperature. Expressions for the fully 
developed volumetric flow rate, heat absorbed by 
fluid, fluid mixing cup temperature, and local Nusselt 
number are presented for each considered case. Such 
fully developed values are approached, in a given 
annulus, when the modified Rayleigh number (Ra*) 

attains a considerably high value. These values rep- 
resent the limiting conditions and provide analytical 
checks on numerical solution for developing flows. 
The results in refs. [6, 7] indicate that present ana- 
lytical solutions are approached by the developing 
flows at large L. 

Once a developing natural convection flow reaches 
a state of  full development,  in a given annulus, the 
volumetric flow rate reaches its upper value ; any fur- 

ther increase in the annulus height would not produce 
an increase in the volumetric flow rate. Moreover, for 
cases with an isothermal boundary, in a given annulus, 
the Nusselt number reaches its lower limiting value 
while the heat absorbed by the fluid and the mixing 
cup temperature reach their upper limiting values and 
all remain constant irrespective of any further increase 
in the channel height. However, for cases with two 
U H F  boundary conditions, in a given annulus, the 
wall temperature (T~), the heat absorbed by the fluid 
and the mixing cup temperature continue their linear 
variations with further increases in the channel height. 
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CONVECTION NATURELLE LAMINAIRE DANS UN ESPACE ANNULAIRE 
CONCENTRIQUE VERTICAL A BOUTS OUVERTS 

R6sumS--On pr6sente des solutions analytiques pour la convection naturelle laminaire &ablie dans un 
espace annulaire concentrique vertical fi extr6mit6s ouvertes. On consid~re quatre conditions aux limites 
fondamentales et on obtient les solutions correspondantes. Ces quatre conditions sont obtenues en com- 
binant ceUes de flux uniforme ou de temperature uniforme sur la paroi avec celles de la paroi opposbe 
maintenue isotherme ~. la temp6rature d'entr6e du fluide ou bien adiabatique. Des expressions sont donn6es 
dans chaque cas pour les param~tres d'~coulement ou de transfert de chaleur. Ces solutions fondamentales 
peuvent ~tre utilis6es pour obtenir des solutions satisfaisant des conditions aux limites thermiques plus 

g6n6rales. 

VOLL AUSGEBILDETE LAMINARE NATORLICHE KONVEKTION IN OFFENEN. 
SENKRECHTEN, KONZENTRISCHEN RINGR,~UMEN 

Zusammenfassung--Die analytischen L6sungen for die voll ausgebildete natfirliche Konvektion in offenen, 
senkrechten, konzentrischen Ringrfiumen werden dargestellt. Die L6sungen werden fiir grundlegende 
Randbedingungen ermittelt, welche durch Kombination yon konstanter Temperatur oder konstantem 
W~irmestrom an der einen Wand mit adiabaten Bedingungen oder konstanter Temperatur (Eintritts- 
temperatur des Fluids) an der anderen Wand entstehen. Fiir alle vier Ffille werden Beziehungen f~tr die 
Str6mungs- und W~irmeiibergangsparameter angegeben. Mit Hilfe dieser grundlegenden L6sungen 

k6nnen L6sungen fiir allgemeinere Randbedingungen abgeleitet werden. 

I-IO.rIHOCTbIO PA3BIdTAJ:I ECTECTBEHHA.q KOHBEK~H.q liPid JIAMHHAPHOM 
TEqEHHH B HE3AMKHYTbIX BEPTIdKAJIbHbIX KOHI_IEHTPHqECKHX KO.rlbLIEBbIX 

KAHAJIAX 

Ammoxatmw--l'Ipnae~eHla aHaMHTHqeCKHe pemeHHs Rns noJ1HOC'rbto pa3BHTOfi eCTeCTBeHHOfi KOHBeKUHH 
B He3aMKHy'rbIx BepTHKaSIbHblX KOHHeHTpHq~KHX KOJIbHeBbIX KaHa.nax. ~TH pellleHHfl COOTBeTCTBF1OT 
tleTbIpeM THHaM rpaHHqHbIX yC~OBH~. YKa3aHHble THIIb! FpaHHqHi,IX yeJIOBHfi npe~icTaB.~mOT c06ofi  
KOM6HHall[HH HOCTO~IHHOFO TelUIOBOFO nOTOKa H.rIH HOCTORHHOfi TeMnepaTyp~,l Ha O]IHOfi H3 CTeHOK 
KaHasla ¢ nOCTOgHHOfi TeMnepaTypofi, paBnofi TeMnepaType )KH.11KOCTH Ha Bxone, H.rlH OTCyTCTBHCM Ten- 
JlOO6MeHa Ha IIpOTHBOHOJIO)KHOH CTeHKe. No.ny'/CHbl Bi,/paxeHHg ~JI~i rlapaMe'rpoB Te~leHH~ H TeILr[one o 
peHoca, COOTBeTCTByIOU.tHX Kaxc~IOMy TaKoMy cnyqa~o. I'IpHBe]IeHHbIe K CTaTbe pemeHHs MO)KHO 
ilcnO.rlb3OBaTb R~Ig FcHepaLtHH peHIeHHfi, ynoBneTBopmoumx 6once  O~IHHM TeHffIOBbIM rpaHHqHblM 

yCJIOBHflM. 


